Metal π **Complexes of Benzene Derivatives. 46.¹ Communication between Chromium(1) and Molybdenum(II1) in the Hetera[3]metallocyclophane** $\{[(Me_2P-\eta^6-C_6H_5)_2Cr](Pr^i-\eta^5-C_5H_4)MoCl_2]\}$ ^{**} $\frac{8}{3}$

Christoph Elschenbroich,* Thomas Isenburg, and Andreas Behrendt

Fachbereich Chemie, Philipps-Universitat, D-35032 Marburg, Germany

Received March 9, 1995

Peripheral substitution at $bis(n^6$ -benzene)metal complexes by R2P groups affords organometallic diphos-type ligands which may carry an unpaired electron, as in **1,2a** or, simultaneously, a unit of charge, as in $2^{+1.2b}$ Given the widespread occurrence of diphos ligands in coordination chemistry, complexes **3** and **4** serving as a recent examples? the special ligands **1** and **2** offer the opportunity to study intramolecular interactions in oligonuclear complexes via electron-electron spin-spin interactions by means of EPR spectroscopy⁵ or via redox splittings using cyclic voltammetry.⁶ In cases where the structure is

known, this study may take the form of unraveling the mechanistic details of the interaction; if for some reason the structure cannot be determined by diffraction methods, valuable structural information may be derived from the zero-field

[§] Dedicated to Professor Henry Taube on the occasion of his 80th birthday.

- (1) Part 45: Elschenbroich, Ch.: Bretschneider-Hurley, A,; Hurley, J.; Behrendt, A.; Massa, W.; Wocadlo, S.: Reijerse, E. *Inorg. Chem.* **1995,** *34,* 743.
- **(2)** (a) Elschenbroich, Ch.; Stohler, F. *Chimia* **1974,** *28,* 730. (b) Elschenbroich, Ch.; Heikenfeld, G.; Wiinsch, M.; Massa, W.: Baum, G. *Angew. Chem., Int. Ed. Engl.* **1988,** *27,* 414.
- (3) Procedure for compound 7 : $(\overline{Pr^i \cdot \eta^5 \cdot C_5H_4})MoCl_4^9$ (1.24 g, 3.35 mmol) is suspended in 100 mL of THF and reduced with sodium amalgam (160 mg, 7 mmol, of Na in 10 g of Hg) at room temperature during 5 h to yield an olive green solution of $[(Prⁱ- η^5 -C₅H₄)MoCl₂]₂, which$ is diamagnetic. This highly air sensitive solution is filtered over a *5* cm layer of silica gel. The solvent THF is removed in vacuo and replaced by 30 mL of toluene. Upon addition of $(Me_2P-\eta^6-C_6H_5)_2Cr$ **(2)** (1.17 g, 3.41 mmol), dissolved in 30 mL of toluene, a brown precipitate immediately forms. Stirring is continued for 4 h, and the precipitate (1.56 g) is separated from the brown solution by filtration. This solid material is insoluble in all common solvents. The filtrate is reduced to a volume of 10 mL and layered with 30 mL of n -hexane. Upon cooling to -20 °C, 40 mg (0.06 mmol) of 7° is obtained as reddish brown microcrystalline material. Anal. Calcd for $C_{24}H_{33}$ -C12CrMoP2: C, 47.86: H, 5.52. Found **(7'):** C, 48.31; H, 5.52. Found (insoluble precipitate): C, 47.87; H, 5.79.
- (4) (a) Krueger, S. T.; Owens, B. E.; Poli, R. *Inorg. Chem.* **1990,** *29,* 2001. (b) Owens, B. E.; Poli, R. *Inorg. Chim. Acta* **1991,** *179,* 229. Green, M. L. H.: Izquierdo, A,; Manin-Polo, J. J.; Mtetwa, **V.** S. D.; Prout, **K.** *J. Chem. SOC., Chem. Commun.* **1983,** 538.
- *(5)* Atherton, N., *Electron Spin Resonance, Theory and Applications;* Ellis Honvood: Chichester, 1973; Chapter *5.* Bencini, A,; Gatteschi, D. *Electron Paramagnetic Resonance of Exchange Coupled Systems;* Springer: Berlin, 1990. Willet, R. D.; Gatteschi, D.; Kahn, 0. *Magneto-Structural Correlations in Exchange Coupled Systems;* Reidel: Dordrecht, 1985.
- (6) (a) Richardson, D. E.; Taube, H. *Coord. Chem. Rev.* **1984,** *60,* 107. (b) Osella, D.; Milone, L.: Nervi, C.; Ravera, M. *J. Organomet. Chem.* **1995,** *488,* **I.**

Scheme 1

splitting parameters.⁷ In this note, we address the question of the extent of interaction between chromium(1) and molybdenum(III), which are parts of a **hetera[3]metallocyclophane.*** This frame provides a well-defined mutual disposition of the two metal atoms.

The target molecule 7 was synthesized³ from $(Prⁱ- $\eta⁵-C_5H_4)$$ $MoCl₄(5)⁹$ sodium amalgam, and the organometallic disphosphane **2** following a procedure established by P01i4 (Scheme 1). The new binuclear complex **7'** is considerably more stable than 4, which could only be generated as a transient species.^{4b} However, as in the case of the synthesis of **4,** the main product of this reaction is an insoluble material **8** of as yet unknown nature. **7'** and *8'* give identical microanalyses. Therefore, **8** possibly represents a polymer in which the diphosphane **2** adopts a bridging rather than a chelating function.

The binuclear chelate **7** contains an 18 valence electron (18 VE) chromium and a 17 **VE** molybdenum center. Therefore, it exhibits an EPR spectrum which is very similar to those of the mononuclear species **3** and **4.4a** In Figure 1, the EPR spectrum of **7'** in fluid solution is shown with the simulation of the ^{95,97}Mo satellites; in the caption the EPR parameters are given, together with those of **3** for comparison. Since we have shown recently that in the related paramagnetic species $\{[(Me_2P \eta^6$ -C₆H₅)₂Cr](Me- η^5 -C₅H₄)Mn(CO)}⁺⁺ (9⁺⁺)hyperfine coupling

to *both* central metals is resolved,¹⁰ it was conceivable that for

- (7) (a) Chasteen, N. D.; Belford, R. L. *Inorg. Chem.* **1970,** *9,* **169.** (b) Samuel, E.: Harrod, J. F.; Gourier, D.; Dromzee, Y.; Robert, F.; Jeannin, **Y.** *Inorg. Chem.* **1992,** *31,* 3252.
- (8) The name *metallocyclophane* designates bis(arene)metal complexes bearing interannular bridges (compare *metallocenophane:* Mueller-Westerhoff, U. T. *Angew. Chem., Int. Ed. Engl.* **1986,** *25,* 702). In *homometallocyclophanes,* the bridges are formed from C units exclusively; in *heterametallocyclophanes* they may also contain other main group or transition elements in their backbone.
- (9) The ligand Pr'-cyclopentadienyl was chosen in order to increase solubility of the educt *5* as well as the product **7. 5** was prepared as described in ref 4a.
- (IO) Elschenbroich, Ch.; Isenburg, T.; Metz, B.; Behrendt, A,; Harms, K. *J. Organomet. Chem.* **1994,** *481,* 153.

Figure 1. (a) EPR spectrum (X-band) of *7'* (toluene, 25 "C, fluid solution), ^{95.97}Mo satellite spectrum shown at higher gain. $\langle g \rangle = 1.982$, $a^{(31P)} = 2.3$ mT, $a^{(95,97)}$ Mo) = 3.4 mT. EPR data for $3^{.4a} \langle \tilde{g} \rangle = 1.986$, $a^{(3)}P$) = 2.6 mT, $a^{(95,97)}Mo$ = 2.9 mT. (b) Simulation of the satellite spectrum. (c) EPR spectrum of 7^{n+} (toluene, -150 °C, rigid solution): $g_1 = 1.977$, $g_{2,3} = 1.981$, $D = 286 \times 10^{-4}$ cm⁻¹, $E < 10 \times 10^{-4}$ cm⁻¹, (*) spectrum of residual $S = \frac{1}{2}$ species.

7[•] in addition to hyperfine interaction with ³¹P and ^{95,97}Mo coupling to $53Cr$ could also be picked up. No indication of this kind is found in the spectrum of **7'.** Obviously, the **s** orbital spin population at ⁵³Cr $(I = \frac{3}{2}$, 9.54%) is too small to generate observable satellites. In the case of *9'+,* the singly occupied orbital is centered at chromium, and a minute amount only is shared by bridging manganese, leading to the coupling constant a^{55} Mn) = 0.8 G. This exceedingly small interaction owes its detectability to the inherently small linewidths encountered in the EPR spectra of bis(η^6 -arene)metal (d⁵) species.¹¹ Conversely, in the neutral radical **7,** according to Fenske-Hall MO calculations on the model compound $(\eta^5$ -C₅H₅)Mo(PH₃)₂Cl₂,¹² the unpaired electron resides at molybdenum $(d³)$ in an orbital of 60% Mo 4d_z² content with substantial contribution from phosphorus 3d orbitals. Here a very small hyperfine interaction with the ⁵³Cr nucleus would certainly be hidden under the larger EPR linewidth. Since the ^{95,97}Mo coupling for 7 is somewhat larger than for 3, spin transfer to the bis(η^6 -arene)chromium moiety in **7** is apparently negligible.

Since hyperfine coupling failed to provide evidence for intermetallic communication in **7',** we tumed to electronelectron spin-spin interaction as a probe. **A** look at the redox

Figure 2. Cyclic voltammetry of 7° in DME/n-Bu₄NClO₄ (0.1 M) at a glassy carbon working electrode, Pt counterlectrode versus SCE. *T* $= 20$ °C, scan rate 100 mV s⁻¹. $E_{1/2} = -0.54$ V ($\Delta E_p = 85$ mV, i_a/i_c) \approx 1, +7^{+/0}); E_{pa} 0.63 V (irreversible oxidation of 7⁺); $E_{pa} = 1.16$ V (irreversible).

potentials $E_{1/2}$ for the constituting moieties reveals that selective one-electron oxidation at chromium to yield the biradical cation 7^{**} should be feasible since $E_{1/2}(2^{+/0}) = -0.57$ V^{2b} and $E_{1/2}(3^{+/0}) = -0.12 \text{ V.}^{4a}$ In fact, oxidation of 7 by 4-pyridinecarbaldehyde and immediate cooling to -150 °C lead to an EPR spectrum in rigid solution which undoubtedly is that of a biradical (Figure 1). This conclusion is based on the presence of a half-field $(\Delta M_s = 2)$ signal and a typical triplet EPR fine structure in the $g \approx 2$ region which is superimposed on the signal of a residual $S = \frac{1}{2}$ species. While in the triplet EPR spectrum the zero-field splitting parameter E is too small to be resolved, for D a value of 286×10^{-4} cm⁻¹ is obtained. Under the assumption that the point-dipole approximation is valid, by means of the relation $r = (3g\beta/2D)^{1/3}$,¹³ an interspin distance of 450 pm is derived. This result agrees very well with the intermetallic distance $r(\text{Cr} \cdots \text{Mo}) \approx 460$ pm estimated from molecular models and the consideration of analogous molecules like 9 which yielded to X-ray crystallography.¹⁴ The match between interspin distance from EPR and intermetallic distance is in line with the single occupancy of two metal centered d_{z} ² orbitals which are perpendicularly disposed, each orbital being collinear with the respective π -perimeter-metal axis. In such a geometrical situation and at this intermetal distance, overlap between the two singly occupied metal orbitals (torus of $Cr d_{2}$, lobe of Mo $4d_{z^2}$) should be negligible; i.e., metal-metal bonding is absent. Furthermore, since the g values of the monomolecular component radicals *2'+* and **4'** are close to the free spin value, contributions of spin-orbit coupling to zero-field splitting should be unimportant and electron-electron spin-spin interaction in the biradical cation **7"+** can be regarded as purely dipolar.¹⁵

^(1 1) Prins, R.; Reinders, F. J. *Chem. Phys. Lett.* **1969,3,45.** Elschenbroich, Ch.; Möckel, R.; Zenneck, U.; Clack, D. *Ber. Bunsen-Ges. Phys. Chem.* **1979,** *83,* 1008.

⁽¹²⁾ Krueger, **S.** T.; Poli, R.; Rheingold, **A.** L.; Staley. D. L. *fnorg. Chem.* **1989, 28, 4599.**

⁽¹³⁾ Eaton, **S. S.;** More, K. M.; Savant, B. M.; Eaton, G. R. *J. Am. Chem. SOC.* **1983,** *105,* **6560.**

⁽¹⁴⁾ For **7,** crystals suitable for an X-ray structure determination could not be obtained.

It has been demonstrated by cyclic voltammetry that mononuclear **3'** may be oxidized reversibly to the 16 VE species **P**⁺⁺⁺⁺⁺⁺^{4a} the latter cation also being accessible as the salt $[3] (BF₄)$.¹⁶ Since 3^{n+} constitutes a spin triplet,¹² it was of interest to generate the dinuclear dication 7^{2+} in order to possibly investigate intramolecular interaction between a $Cr(S = \frac{1}{2})$ and a $Mo(S = 1)$ center. However, as the cyclovoltammetric trace (Figure 2) shows, the redox couple $7^{2+/+}$ is irreversible. This

Additions and Corrections *Inorganic Chemistry, Vol. 34, No. 26, I995* **6567**

also applies to CV in the limited scan range -1.0 V $\leq E$ +1.2 V. Thus, whereas primary oxidation of *7'* at the bis(arene)chromium moiety is reversible, displaying only a small anodic shift of $+30$ mV relative to mononuclear 2, secondary oxidation to yield the hypothetical dication **72+** probably leads to metal expulsion, caused by the close vicinity of two cations in the dinuclear complex and assisted by nucleophilic attack of the solvent.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for their financial support. A.B. is indebted to the Graduiertenkolleg Metallorganische Chemie at Marburg for the award of a research scholarship.

IC950277D

Additions and Corrections

1995, Volume 34

Jiann T. Lin,* Shih-Sheng Sun, Jiann Jung Wu, Liangshiu Lee, Kuan-Jiuh Lin, and Yi Fong Huang: Dinuclear Metal Carbonyls Bridged by Pyridyl Ligands Incorporating an Alkyne Entity.

Page 2329. In Figure **2,** the y-axis values should be multiplied by 10 to read 25 000, 24 000, etc In Table *5,* footnote *e,* substitute $(\eta^1$ -**DPB**) for $(\eta^1$ -**BPB**).

Page 2330. For Figure 3, the caption should read "Electronic spectra of...".

IC95 1330 1

⁽¹⁵⁾ Complementary studies of **7"+** based on measurements of magnetic susceptibility are unpractical since 7^{**} could only be generated in solution, all attempts to isolate analytically pure salts like **[7](BF4)** being abortive.

^{(16) (}a) Stiirker, K.; Curtis, M. D. *fnorg. Chem.* **1985,** *24,* 3006. (b) The related salt [Cp*MoCl₂(PMe₂Ph)₂]AlCl₄ has very recently been characterized by X-ray diffraction: Abugideiri, F.; Keogh, D. W.; Kraatz, **H.-B.;** Pearson, W.; Poli, R. *J. Organomer. Chem.* **1995,** *488,* **29.**